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The flexural vibrations of a rotating shaft, running through one or

more critical speeds, can be reduced to an acceptably low level by

applying suitable control forces at an intermediate span position. If

electromagnets are used to produce the control forces then it is

possible to implement a wide variety of control strategies.

A test rig is described which includes a microprocessor-based

controller, in which such strategies can be realised in terms of

software-based algorithms. The electromagnet configuration and the

method of stabilising the electromagnet force-gap characteristic are

discussed. The bounds on the performance of the system are defined. A

simple control algorithm is outlined, where the control forces are

proportional to the measured displacement and velocity at a single

point on the shaft span; in this case the electromagnet behaves in a

similar manner to that of a parallel combination of a linear spring and

damper. Experimental and predicted performance of the system are

compared, for this type of control, where various programmable rates of

damping are applied.

INTRODUCTION

In many engineering applications it is desirable to control the

amplitude of transverse vibrations of flexible transmission shafts,

especially if the design speed range encompasses one or more critical

speeds. It can be demonstrated theoretically (e.g. see Refs.l to 3)

that it is possible to satisfactorily control the flexural vibrations

of a rotating shaft by applying control forces at a single intermediate

span position. If the position of the control force application is

suitably chosen then satisfactory reductions in the amplitude of

vibration may be achieved over a speed range covering several critical

speeds.

Two control devices, which are appropriate for this application,

have been investigated in recent years - the squeeze-film bearing (e.g.

see Refs. 4 and 5) and the electromagnetic bearing. The former has

proved a relatively robust and reliable means of achieving vibration

control. However, despite considerable efforts, it has proved

difficult to predict its dynamic performance quantitatively, with any

degree of accuracy.

* This work was supported by the Science and Engineering Research

Council. The authors gratefully acknowledge this source of funding.
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Electromagnetic bearings offer an attractive alternative approach

and interest in such devices, as a means of active

vibration control, has grown rapidly during the last few years [6-11].

The considerable advantage of such bearings is that it is possible to

implement a wide variety of control strategies, particularly if they

are operated under computer control. Moreover, it is possible, at

least in principle, to predict their dynamic characteristics fairly

accurately. This implies that it should be possible to design an

electromagnetic control device which has a quantitatively predictable

performance when applied to any particular rotor-bearing system.

Various types of electromagnetic control device have been described

in the literature [6-11]. One of the simplest, and most promising, of

such devices comprises six pole pieces surrounding the shaft, with

three alternate energised poles. With this arrangement, combined with

microprocessor control, it has been demonstrated experimentally that it

is possible to control a rotating shaft satisfactorily, when it passes

through critical speeds [II]. However, a quantitative comparison

between experimental and predicted performance of the combined

rotor-electromagnet system was not attempted in this earlier work.

In the present paper the rationale behind the adoption of this

particular electromagnet configuration is initially discussed. This is

followed by a description of the power electronics, and

microprocessor-based control system used to drive the electromagnets,

with emphasis on the factors which limit the performance of the system.

The implementation of a simple control strategy, in which the

electromagnet behaves approximately as a linear spring-plus-damper, is

outlined and it demonstrated theoretically that, with this form of

control, the complete rotor-electromagnet system can become unstable,

under certain circumstances. A qualitative prediction of the influence

of various factors on stability is obtained from this theory, which is

fully in accord with experimental observations.

The paper concludes with some experimental results obtained from a

test rig, in which the rotor is a simple shaft, of uniform

cross-section, and the only source of excitation, when rotating, is the

initial bend. For pure damping control, the results of free-decay

tests are shown, which clearly demonstrate the effect of increasing the

programmable rate of damping. A parametric identification technique,

applied to the free-decay data, results in a direct calibration of the

relevant damping coefficient. Results obtained from the test rig, when

the shaft is rotating under damping control, are then presented and

compared with corresponding theoretical predictions, for a speed range

covering the first critical speed of the shaft.

EQUIPMENT

Rotor-Bearing System

The experimental rotor configuration is shown in Fig.l and

comprises a 25 mm diameter shaft of austenitic stainless steel, mounted

in self-aligning ball races, giving a length between bearings of 1500

mm. The shaft is driven through a light flexible coupling, and can be

driven at up to 6000 r.p.m, from a variable speed drive.
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In this configuration, the first two critical speeds are 1260 and

5480 r.p.m. Additional masses may be added to bring the third critical

speed within the design maximum speed. The active element used to

control shaft motions, the electromagnet assembly, is located at the

one-slxth span point, and can thus apply forces which are effective in

controlling motions in at least the first three modes.

The shaft position is measured using capacitative transducers,

which operate reliably in the magnetic fields encountered. These

transducers operate satisfactorily as they are not subjected to oil

contamination. Commercial equipment is used to energise the transducers

and to demodulate their outputs. Transducers are mounted horizontally

and vertically, and measure these components of shaft motion at two

points, located between the magnet and the centre of the rotor.

Electromagnet Configuration

The active control element is shown in Fig.2 and comprises six pole

pieces surrounding the shaft, with three alternate poles wound, and the

three interleaved poles unenergised. The flux paths pass through the

poles and their backing ring, through the small airgaps, and through a

cylindrical core 50.8 mm diameter mounted on the shaft. This

configuration gives radial fluxpaths in the central core and simplifies

its construction, thin laminations being used to limit eddy current

losses.

Design of the electromagnets is dominated by the need to linearise

forces as the airgaps change. The attractive force F across an airgap

is related to flux density B by the square-law relation F = BZa/2_o,

where a is the poleface area and _o the permeability of free space (=

4w x 10 -7 H/m). The flux density is proportional to current I, but

inversely proportional to the total air-gap g. Neglecting leakage flux

and working below saturation, B = _oNI/g where N is the number of

turns. An electromagnet thus produces forces which vary as i/g 2. At

small gaps the rotor plus electromagnet will be unstable. To stabilise

and linearise this behaviour, Salm and Schweitzer [9] have described an

electromagnetic actuator in which each electromagnet coil contains two

windings, carrying a bias current Io, and a control current I. A pair

of electromagnets on opposite sides of the core are connected such that

flux on one electro-magnet is proportional to I o + I, while the

opposite electromagnet produces flux proportional to I o - I. This

system can be shown to linearise first order response only, with

respect to both I and g. The system has a high steady power

dissipation due to the bias currents Io, and requires a unidirectional

power amplifier (for bias current) and one bidirectional power

amplifier per pair of electromagnets.

We have chosen instead to follow previous work on electromagnetic

suspensions at Sussex [12], and control flux densities directly.

Hall-effect plates are installed in the airgap at the centre of each

energised pole to measure flux densities here. The electromagnets and

their power amplifiers lie within an inner feedback loop, where the

measured flux is compared with the drive signal, which is thus a flux

demand. The non-linearity with respect to electromagnet gap is thereby
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removed. The Hall plates are 0.35 mm thick. They, and their mechanical

protection, require a small increase in airgap.

The control system has been implemented under microprocessor

control in order to develop sophisticated control strategies. At this

point it is only necessary to note that complex drive waveforms can be

readily generated. It is no longer necessary to obtain the linear

characteristic which differential driving of a pair of opposed

electromagnets can give. The minimum provision of electromagnets and

their drive amplifiers can be re-examined.

The requirement is to control two degrees of freedom of shaft

motion of the electromagnet location, using devices which can apply

attractive forces only. For any n degrees of freedom considered

together, the minimum number of electromagnets will be n+l, if a

suitable geometry is chosen. The one additional electromagnet arises

from the restriction to attractive forces. It can be best visualised

by considering the suspension to require one indeterminacy, allowing

(though not requiring) all magnets to be preloaded, with a set of

self-equilibrating forces. Having provided this system any direction

of resultant force can be generated by suitable matched changes in the

magnet forces. Operation is, however, not restricted to this fully

biased mode, and minimum power dissipation is obtained if bias is

reduced until the first magnet drops to zero force.

It may be noted that this principle differs slightly from

electromagnetic suspensions, in which the weight of an object may often

be used to preload the system of electromagnets, which can then be

reduced in number by one. Without this modification it is indeed

possible to identify a system of 7 electromagnets which can apply all 6

independent force components to a platform.

If the two translational degrees of freedom of the shaft at the

electromagnet location are considered separately, then two attractive

forces are required to control each. The total requirement is four

electromagnets and drive amplifiers, and there is little economy over

previous systems. However, taking the two degrees of freedom together,

three electromagnets, each with its drive amplifer, are sufficient.

This offers considerable economies in power amplifiers, and

simplifications in the packing of coils and poles in the electromagnet

assembly. This configuration, shown in Fig.2, is used in the present

work. Unwound poles are placed between each of the wound poles with a

single backing ring. The layout ensures that only unidirectional

current drive to each coil is required; this considerably simplifies

the power amplifier design.

Power Electronics and Control

Each electromagnet coil is energised by a power amplifier of the

pulse-width modulation (p.w.m.) type. The connections of the coll to

the d.c. power supply of voltage Vs are switched to alternately drive
increases and decreases in the coil current.

The switching frequency is high compared with the coll time

constant L/R, and is normally above the audible frequency range. The
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input voltage to the amplifier sets the mark/space ratio of the

switching signal. The on-time t I as a fraction of the total period 7

is related to the current I, averaged over the switching cycle by:

tllT= M + (ll2Vs)((LdI/dt) + 2E + IR) (i)

where E is the back-emf generated by the core velocity.

The block diagram of the control system is shown in Fig.3. The

outputs of the equipment energising the displacement transducers are

used directly as the displacement signals. They are also bandwidth

limited and passed through analogue differentiators to give the

velocity signals. The signals pass through sample and hold gates, and

can be switched onto two 12-bit successive approximation

analogue-to-dlgital converters. These are interfaced to the Z8002

microprocessor over the Z-bus. Outputs from the microprocessor are

provided through 12-bit digital-to-analogue converters which drive the

flux error amplifiers. Timing and shaft-speed measurement are driven

through counter-timers.

As a prototype system, the Z8002 is mounted in a development module

containing the monitor and a large area of random-access memory (RAM).

The system is commanded from a terminal, and program editing, storage

and assembly is carried out on a host system running under CP/M.

Machine code programs are downloaded into the development module's RAM

in order to operate the system. A production version would omit

terminal and host system, and store the fixed program in ROM on the

microprocessor system, with automatic initialisation and execution on

reset as power is first applied.

The ZSO00 series processor was selected for the project, as the

only 16 bit processor available in the U.K. at the time the project
started.

Software

The microprocessor software was developed using the ZSO00 assembly

language, and is required to operate at two levels. At the low level,

for a high computation speed, a loop is executed, initiated by a timer

which sets the 550 _s sampling rate. The sample-and-hold gates,

multiplexors and ADC's are controlled to measure the shaft position and

velocity in x- and y-directions, and these values are stored. The

control forces are computed, and resolved onto the magnet directions.

As the outputs are used as a flux demand, it is necessary to perform a

square root extraction: this is performed as a direct look-up in a 4K

word table. Finally the control signals are output through the DAC's.

At a higher, and slower, level the constants in the control law may

be altered, in response to measurements of shaft speed or to observed

performance. This level is performed in the processor's normal mode,

and the low level tasks described above, and speed measurement, are

initiated by vectored interrupts, which enter the processor's system

mode and initiate these tasks as the appropriate interrupt service
routines.
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The results described below were obtained using an earlier
development version of the software in which the higher software level
is not implemented.

CHARACTERISTICS OF THE ELECTROMAGNET SYSTEM

Force Resolution

The electromagnet system is normally required to generated rotating

forces which are synchronous with the rotor. In this mode, the

required forces in x- and y-directions are computed as F x and Fy, and

the required forces in the three electromagnets are obtained as shown

in Fig.4. For any direction of the resultant of Fx and Fy, one magnet
can generate forces opposing the resultant, and it is reduced to the

set minimum force F o. The axes of the two magnets which are driven

include the dlrection of the resultant.

The resolution is simple to program, and a pseudo-code for this is

given in Appendix A. This gives the derivation of the required magnet

forces F I, F 2, F 3 in terms of the computed forces Fx,Fy. Addition of a

minimum force F o is included within the table look-up, which will be

performed after execution of this code, to obtain the drive voltages to

the power amplifiers.

Low Frequency Performance

At low frequencies, the capacity of the electromagnet system is

limited by core saturation, and by coil dissipation. The shaft speeds

are high compared with the coll thermal time constants. Mean power

dissipation, rather than maximum instantaneous dissipation, will

produce this limit. At constant air-gap, this mean dissipation is

proportional to the area under the force waveform, but in general the

currents are modulated by airgap variations.

High Frequency Performance

The p.w.m, amplifier open loop conductance was shown to vary with

the signal frequency. The e.m.f. E is generally small, and the gain

shows a first-order response

I 2Vs/R

tl/T 1 + J_/_o
(2)

where the corner frequency Wo is the inverse of the coil time constant

L/R. This is the longest and dominant time constant in the system, and

imposes severe performance limitations. The flux feedback loop

operates to reduce gain but also increases the corner frequency,

multiplying it by the loop gain. At the closed-loop corner frequency,

substantial phase errors occur, as the amplifier contributes a 45 °

phase lag. Small contributions may be introduced elsewhere in the

loop, as substantial filtering must be introduced at the p.w.m.

switching frequency.
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A further limitation arises when slew-rate limiting occurs. At low

currents dI/dt cannot exceed • Vs/L. This imposes a limiting linear

rise or fall of current with time, and hence a parabolic limiting

force-time curve. The force-time waveform for one magnet is shown in

Fig.5.

A limiting slew-rate condition is shown by the broken line which at

zero force is horizontal. For a zero bias level, i.e. F o = O, it will
be seen that the initial rise in the force waveform can never be

attained, and distortion will occur. A small bias level is of great

benefit in allowing a useful rate-of-rise of current to be attained at

point B. This also avoids operation conditions for the p.w.m.

amplifiers at which commutation times become significant.

In operation, the choice lies between accepting a small distortion

when a small bias level is used, and eliminating distortion but

substantially increasing dissipation by adopting a high bias level.

The former option is preferred at present.

The operating area of the power amplifier-electromagnet combination

is shown in Fig.6. Further investigation shows that only the

dissipation limit alters as the core moves within the magnet poles.

The magnet used in the present work is designed to produce 400 N at

up to 100 Hz, using a 320 volt supply, within acceptable distortion
limits.

CONTROL STRATEGY

In the present work the control strategy is to provide control

forces which depend on the measured motion of the shaft, at one span

position only. Since the shaft-bearing system under consideration is

symmetrical, one need only describe the strategy for a single plane of
vibration.

Suppose that the transverse displacement of the shaft is measured

at a distance, Xm, from one end, and that the control force is applied

at a distance, Xc, from the same end. Let Fc(t) denote the time

varying control force, and Ym be the measured displacement.

One of the simplest approaches, and that adopted here, is to

generate a control force which is a linear combination of a

displacement-proportional component and a velocity-proportional

component, i.e.

F c = -ky m - CYm (3)

where k is a "spring" constant and c is a "damping" constant. When x m

and x c are equal the constants k and c have their usual meaning. In

the present application the shaft vibrates synchronously - i.e. Ym (and

Ym) fluctuate harmonically, with a frequency equal to the shaft's

rotational speed, _. It follows, from equation (3) that Fc(t ) is also
harmonic.
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If k and c are allowed to vary with w than one can achieve

"optimum" control, over any required speed range [3]. However, in the

present investigation attention is focussed on the situation where both

k and c are constant, independent of speed. As theoretical work has

demonstrated, if k and c are chosen carefully, this type of control can

successfully limit vibration amplitudes over a speed range covering

several critical speeds [2].

THEORETICAL TREATMENT

Modelling the Shaft-Bearing System

To obtain theoretlcal predictions of the shaft vibrational

behaviour, when controlled by a force, as given by equation (3), a

computer program was written, based on the stiffness method. The shaft

was discretlsed into a number of lumped masses, with the elastic

segments between these masses being taken to be massless. The bearings

were modelled as simple, pinned supports. The program could cater for

any form of excitation, arising from the initial bend of the shaft, and
the distribution of mass unbalance.

The equations of motion were formulated in the standard form

°o

my_+ cz + KX = Q(t) (4)

where _, _ and _ are the mass, damping and stifness matrices,

respectively, _ is a column of displacements and _(t) is a column of
excitation components. A numerical solution of equation (4) enabled

the vibration amplitudes of the discrete masses, at any rotational

speed, to be calculated. Moreover, the stability of the system could

be assessed, through an eigenvalue analysis of the homogeneous form of

equation (4) (Q(t) = 0).

Approximate Analysis for Damping Control

If attention is focussed on a speed range covering the first

critical speed only, and damping control alone is considered, then it

is possible to obtain a simple analytical expression for the vibration

response. This expression is likely to be fairly accurate in the case

of the present shaft, since its natural frequencies are well separated.

Considering initially, for simplicity, the case of free vibration

(i.e. no rotation) one can approximate vibration in the first mode by

assuming that it is of the same form as undamped vibration - i.e.,

_x
y(x,t) = Y(t) sin (-T) (5)

where y, as before denotes transverse displacement, Y(t) is a function

of time only and Q is the total shaft length. A single degree of

freedom equation of motion can then be formulated using the energy

relationship
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Rate of change of total energy = - Rate of energy dissipation

(potential + kinetic) due to damping

This leads (see Appendix B) to the equation

(6)

tt I

y + BY + y = 0 (7)

where here differentiation is with respect to the non-dimensional time

T = wit (8)

and e I is the first natural frequency of the shaft. B, a

non-dimensional damping coefficient is related to c (see equation (3))

through the equation

_x _x

B - M_I2C sin (--_) sin (--_) (9)

where M is the total mass of the shaft. In the experiments to be

discussed later Xm/9 = 1/3 and Xc/9 = 1/6; hence, in this particular

case,

#3c

B - 2M_1 (10)

For the case of a rotating shaft, with initial bend excitation

only, equation (7) can be generalised by incorporating a non-zero

right-hand side. If the initial bend is assumed to approximate to the

shape of a half-sine wave then, at any shaft location, x, one finds,

approximately, that

II I

Y + BY + Y = b cos _t (II)

where b is the initial bend at that location. Solving equation (ii)

for synchronous vibration shows that the amplitude of vibration, A, at

location x, is given by

b (l__Z) 2+Bz_2
(12)

where

n = w/e I (13)

is a non-dimensional frequency.

Comparisons between predictions from equation (12), and the more

accurate numerical approach described earlier, generally showed good

agreement. Fig.? shows a typical comparison for the case where c = 272
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Ns/m. Here the amplitude of vibration, in one plane, at the damper

position is plotted against rotational speed.

Stability Considerations

The ideal control law expressed by equation (3) can only be

realised approximately, in practice. Due to the hardware limitations

described earlier, the bandwidth of the electromagnetic system (EMS) is

of order i00 Hz; at frequencies in excess of this the phase shifts and

gain variations associated with the EMS become very significant and

must be taken into account in any assessment of the overall stability

of the total shaft-plus-EMS.

The total system may be regarded as two sub-systems - the

shaft-bearing system (SBS) and the electromagnetic system (EMS). These

sub-systems are coupled through the following two variables:

(1) the force Fc(t), at position x c

(ii) the shaft displacement, Ym(t) at position x m.

The appropriate block diagram representation of the total system is

shown in Fig.8. For a stability assessment it is sufficient to

consider the case of no rotation - i.e., no excitation, and motion in

one plane only.

For the SBS, the Laplace transform of Ym(t), denoted Ym(s), is

related to the Laplace transform of Fc(t), denoted Fc(s), though the
linear relationship

Fc(s ) = M(s)Ym(s ) (14)

Here M(s) is the "mechanical" transfer function for the shaft-bearing

system. Similarly, for the EMS one can write (assuming that this

sub-system behaves, at least approximately, in a linear fashion)

Fc(s ) = E(s)Ym(s ) (15)

where E(s) is the "electrical" transfer function.

between equations (14) and (15) one finds that
Eliminating Fc(s )

D(s)Ym(S) = 0 (16)
where

D(s) = M(s) + E(s) (17)
and

E(s) = -E(s) (18)

The total systems characteristic equation is thus

D(s) = 0 (19)

For stability all the roots of equation (18) must lie on the left

hand side of the complex s-plane. The position of these roots can be

determined numerically if both M(s) and E(s) can be expressed in

algebraic form. Alternatively, a graphical procedure can be used.
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In the present paper the graphical technique known as the Leonhard

Locus (e.g. see Ref.13) will be used to examine the factors which

influence total system stability. This involves a consideration of the

mapping between the s-plane and the complex D-plane, where D is defined

by equation (17). Firstly, it may be observed that the roots of the

characteristic equation all map to the origin of the D-plane. Now if a

point travels along the imaginary axis of the s-plane - i.e., s = jw,

with w increasing from w = 0 - it will map to a curved locus, D(jw), in

the D plane, known as the Leonhard Locus. In the case of a stable

system all the roots in the s-plane lie to the left-hand side of the

locus s = Jw; this implies that the mapped, Leonhard locus, in the

D-plane will be such that the origin will always lie on the left hand

side, to an "observer" travelling along the locus in the direction of

increasing frequency, w. For a system at the threshold of stability

the Leonhard locus should pass exactly through the origin of the

D-plane.

In the present case the Leonhard locii, M(jw) and E(jw), may be

evaluated separately and then combined, through a simple addition.

According to equation (17) the combined Leonhard locus is given by

D(Jw) = M(J_) + E(Jw) (20)

Now M(jw) and E(jw) are directly related to the frequency response

functions for the mechanical and electrical sub-systems, respectively.

Thus the stability of the total system can be deduced directly from the

characteristics (amplitude and phase variation with frequency) of these

two functions.

For a plnned-pinned uniform shaft the appropriate frequency

response function, M(jw), can be found by standard methods. If it is

assumed that the introduction of structural damping does not lead to

coupling between the modes then a modal expansion for the inverse of

M(j_) is as follows:

:
-n 2 +(jw)2+2(jW)CnWn ]M(jw) =i [w n

(21)

where

2 2 EI
w = n , -- (22)
n 4

Q

is the nth natural frequency, E is Young's modulus for the shaft

material, I = nd4/64, where d is the shaft diameter, and m is the mass

per unit length of the shaft. _n (n = 1,2...) are the modal damping

factors and the coefficients an are given by

n_x n_x

- 2 sin (--_) sin (--_) (23)_n m_
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Fig. 9 indicates the general behaviour of the Leonhard locus,

M(Jw), for the first three modes. The arrows indicate the direction of

increasing frequency. It is noted that there is one "branch" of the

locus, corresponding to each mode; the n th branch intersects the

imaginary axis of the M(jw) plane at w - w n. The height of such an

intersection is, to a good approximation, directly proportional to the

structural damping of the corresponding mode. In general the

structural damping will become more effective as the mode number, n,

increases; this is one reason why the branches of M(jw) become

progressively higher, as Fig.9(a) indicates. For an imaginary observer

moving along any particular branch the origin always appears to the

left hand side - it follows that the mechanical sub-system, considered

in isolation, is always stable.

For the "ideal" control law given by equation (3) the corresponding

Leonhard locus E(jw) is easily found to be

_(jw) = k + (jw)c (24)

This locus is sketched in Fig. 9(b). It is evident that a combination

of M(jw) and E(j_) will lead to a total system locus, D(Jw) which also

satisfies the graphical stability criterion.

The main interest here concerns the effect of the electromagnet

system's non-ideal characteristic on the total system stability. Figs.

iO(a) and (b) show, qualitatively, the difference between the ideal

pure spring, and the ideal pure damper, E(jw) loci , respectively, and

the corresponding locl _ of the kind obtained in practice. As w

increases, the phase shifts, and gain reduction, becomes progressively

more significant, resulting in curved loci.

A combination of M(jw) with the actual E(Jw) can lead to a Leonhard

locus which indicates instability. This is illustrated in Fig.ll. If a

particular branc h of the M(Jw) is "pulled" below the origin, through

the addition of E(Jw), then total system instability is indicated. The

threshold of instability occurs, for a particular mode, when the

relevant branch of the combined locus just passes through the origin.

Let s denote distance travelled along a Leonhard locus. Then it

may be observed that ds/dw for M(jw), in the vicinity of a natural

frequency, is normally much greater than the corresponding rate of

change for E(jw). Also, for w = w n, M(jw n) is, to a close

approximation, entirely imaginary, with a value given by (from equation

(21))

2
2_nW n

M(JWn) = j. _ (25)
n

This result follows from the fact that the contribution to M(Jwn) from
the n th mode is dominant. If the combination of M(jw) and E(Jw) is to

result in a locus which passes above the origin then one requires,

approximately, that
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2
2&nWn + Im(E(j_n)} > 0 (26)

n

This condition gives a criterion for "stability in the n th node".

Total stability obviously requires that inequality (26) be satisfied

for all n.

Several conclusions can be drawn from this stability criterion.

Firstly, considering the case of pure stifness control, it is evident

that, since _n are generally very small quantities (_n << I), very

small phase shifts can result in instability (see Fig.lO(b)). Thus

this method of control is very prone to instability problems.

In considering the other extreme case of pure damping control it is

convenient to represent E(jw) as

E(jw) = jwc EAe-3 _ (27)

Evidently, for ideal damping E A = 1, _ = 0 and, from inequality (26),

stability is assumed, for all n. However, if 90 ° < • < 27 °0 , at a

particular natural frequency, Wn, then the corresponding mode can
become unstable. The critical value of damping coefficient, c* , at

which the n th mode is marginally stable is given by (for 90 ° < • <

270 ° )

* 2_nWn (28)

c = EA_nlCOS _I

Again, since _n are usually very small compared with unity, c can

be very low. It follows from equation (28) that improvements in the

stable range of damping coefficient can be achieved by

(i) reducing the absolute value of cos

(ii) reducing the non-dimensional gain, E A

(iii) reducing the value of _n, by repositioning the measuring

location, x m.

It is noted that, if only one mode of vibration is unstable, this

instability can be removed, theoretically, by locating the measuring

point at a node of that particular mode. This has the effect of making

_n = O, since the n th mode has the mode shape sin (n_x/9) (see equation

(23)).

COMPARISON BETWEEN THEORY AND EXPERIMENT

Results will now be presented which relate to the case of nominally

pure damping (i.e. k = 0 in equation (3)).

Stability Observations

With x c = 9/6, and xm close to x c, experiments revealed that the

shaft became unstable when the damping coefficient exceeded a small,

non-zero level. The self-excitation was in the form of vibration in

the third mode.

443



Referring to equation (28) one can conclude that, for the third

mode, the value of c* is very low. This is mainly due to the value of
which is in excess of 90 ° It was found

at w3 (~ 180 Hz)_
experimentally that c could be increased by moving the measurement

position closer to a node position of the third mode (x m = _/3). This

observation is in qualitative agreement with equation (28). It was
also found experimentally that c could be increased by reducing the

value of _ at w 3 , through modifications to the electronics and

software. This again is in accord with equation (28).

To enable results to be obtained over a wide range of damping

coefficient (c) values, the measuring point was located at a third mode

node - i.e. at x m = £/3. The total system was then found to be stable

for c values up to about 700 Ns/m.

Free Decay Tests

Experimental estimates of the damping coefficient B, in equation

(7), were obtained by performing free-decay tests on the non-rotating

shaft. The shaft was pulled at its centre, through a small

displacement, and then released. The subsequent transient decay was

then recorded digitally, at equi-spaced time intervals, for various

levels of damping coefficient.

Figs. 12(a) and (b) show typical free-decay experimental results,

including the case where the electromagnetic damping is zero (i.e.

structural damping only is present). The results were obtained for

various programmable rates of damping by varying the rate constants (in

arbitrary units) in the control program. To reduce the effects of

noise, each of the free-decay results was obtained by averaging ten

separate, individual results, obtained under identical conditions.

Each averaged free-decay result was processed by a parametric

identification procedure, which fitted the experimental data to the

solution of the following equation of motion, in a least-square sense

[14,15];

im I

Y + BY + 7Y = 0 (29)

Figs.12 show comparisons between the solutions to equation (29) and the

experimental data, where the theory is computed from the best fit

values of _ and 7. In every case a very good degree of fit is

achieved. Table i summarises the results obtained for B and Z.

It is noted that F is close to unity, as one would expect, for pure

damping. Moreover, B is, to a very close approximation, proportional

to the programmable damping rate, as Fig.13 shows. The results also

show that the contribution of structural damping can be neglected.
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Programmable damping

rate

(arbitrary units)

Table 1

estimated parameters

B Y

0

199

272

397

496

595

744

0 013

0 123

0 178

0 279

0 357

0 407

0 501

1.00

0.08

1.01

1.02

1.08

1.12

1.08

It can be concluded, from the analysis of these tests, that the

electromagnetic control system performs as expected, at least for

frequencies in the vicinity of the shafts first natural frequency (~ 21

Hz).

Rotating Shaft Results

For rotational speeds in the range 200 to 2500 r.p.m., the shaft's

amplitude of vibration, in a single plane, was measured and plotted

against shaft speed. The measurement location was at x ~ 9/6; close to

the magnet position. Figs. 14 show some typical comparisons between

the experimental variations of vibration amplitude with rotational

speed, and corresponding theoretical predictions, for two levels of

damping. The theoretical predictions were obtained from the

lumped-mass computer program, with damping values deduced from the B

values found in the free-decay tests, using equation (i0) to convert

to the damping coefficient c. The initial bend of the shaft was

measured experimentally and used as input data for the program.

Generally the degree of agreement between theory and experiment is very

satisfactory, and it is evident that the vibration amplitude at the

first critical speed can be controlled very satisfactorily by the

electromagnet system. It is interesting to note that there is some

variation in the experimental results, at each level of damping. Thus,

the variation of amplitude with speed as the speed increased from zero

to its maximum value (labelled 'before'), was found to differ somewhat

from the corresponding variation as the speed decreased to zero

(labelled 'after'). Further traverses in speed were found to produce

further variations. This phenomenon is attributed to variations in the

initial bend of the shaft, as the results of stress cycling. This

effect has been observed in earlier investigations (e.g. see Ref.2).

Measurements of the initial bend confirmed that it changed, as the

results of a sequence of rotational tests. The initial bend was found

to return to its original shape over a time period of order one day.

A direct estimate of the non-dimensional damping parameter _,

produced by the electromagnet system, can be found by using the simple

approximate result given by equation (12). In particular, at _ = 1 one

has, from this equation,

A/b = I/B (30)
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Thus, taking the average of the experimental results, at each damping

level, and dividing the amplitude of vibration at w = O(b) by the

amplitude of vibration at w = el, one obtains a simple estimate of B.

In Fig.15 the estimates of B, obtained in this way, are plotted against

the corresponding estimates obtained from the analysis of the transient

data. Each point here relates to one programmable rate of damping.

The points lie very close to a straight line, at 45 ° to the horizontal,

showing a good degree of correlation. There is a small offset, which

indicates that, in the case of rotation, there is a small additional

contribution to the total damping. This contribution probably

originates in the bearings. When allowance is made for this effect one

can conclude, from Fig.15, that the test results obtained with the

rotating shaft are in complete accord with the transient test results.

CONCLUSIONS

A microprocessor based electromagnet system for controlling the

vibration of rotating flexible shafts has been described, and bounds on

the performance of the system have been defined. Theoretical arguments

have shown that, as a result of limitations to the performance of the

electromagnet system, the complete shaft-plus-electromagnet system can

become unstable under certain conditions. A simple stability criterion

has been established which reveals the influence of various factors on

stability. For the case where the electromagnet is programmed to

behave as a simple damper, good agreement between experimental

observations and theoretical predictions has been achieved, over a

rotational speed range encompassing the shaft's first critical speed.

APPENDIX A

ALGORITHM FOR FORCE COMPONENT EVALUATION

fx := (required forces)

fy := ( )

fx' := fx//3

if fx'>O then

if fx'>fy then

call mSoff

else

call mloff

else

if -fx'>fy then

call m2off

else

call mloff

endif

procedure mloff

f2 := fx' + fy

f3 :=-fx' + fy
fl := 0

endproc
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procedure m2off

fl := -fx' - fy

f2 := 0

f3 := -2_fx '

endproc

procedure m3off

fl := fx' - fy
f2 := 2_fx '

f3 := 0

endproc

APPENDIX B

APPROXIMATE EQUATION FOR FIRST MODE FREE VIBRATION WITH DAMPING

For a uniform shaft with pinned supports, free undamped vibration
takes the form

y(x,t) = Y(t) sin (_x/9) (AI)

where Y(t) is a function of time only. A good approximation, when

damping is applied through the electromagnets, is to assume that this

basic form of vibration is still applicable. This approximation

clearly will be most accurate when the damping is light.

The total kinetic energy of the vibrating shaft is then given by

9

KE = my2dx (A2)

o

where m is the mass per unit length. Combining equations (AI) and (A2)
one finds that

1
KE = _ MY2- (A3)

where M = mg. The total potential energy, in the form of elastic

strain energy in the shaft, can also be easily calculated; thus

PE EI ;_(d2y= _--- d_x 2) 2dx

and, from equations (AI) and (A4),

(A4)

EI n4Y 2
PE - (A5)

3
49

Finally, the rate of energy dissipation, R, is given simply by

R = Damper force x velocity at damper

= CYmYc (A6)

where Yc is the velocity at the electromagnet position and Ym is the

velocity at the measuring point. From equations (AI) and (A6) one has
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TrX TfX

R = cy2sin(_) sin (--_) (AT)

Now, following the energy relationship expressed by equation (6),

one has

d
_[_(PE + KE) = -R (A8)

Hence, from equations (A3), (AS) and (AT), one obtains a single degree

of freedom equation of motion, as follows:

_x wx 4

M Y + _-- sin ( ) sin( ) + El n
293

On introducing thge non-dimensional time, T, defined by equation (8),

and using the fact that y, at any value of x, is simply proportional to

Y, one obtains equations (7) and (9). One also finds that

4
2 . E1

(AI0)_i = 3 M
9

This is, of course, the "exact" result for the undamped natural

frequency of a plnned-pinned shaft, since equation (i) is the

corresponding exact mode shape for this case.
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